Author Topic: Everything is scalable or reproduced in an Electrical Universe  (Read 14276 times)

electrobleme

  • Administrator
  • Plasma Star
  • *****
  • Posts: 1503
  • EUreka?: +1/-0
  • It's time to step out of the Gravity, Well?
    • Electric Universe theory blog
Why are the same things found in different locations/situations?

If geological events/strata/rocks/features happened millions of years apart under completely different conditions then why are the same things or slightly different variations of the same thing/process found in very different area?
Unless the same force created them, not the same conditions?

The first and last layers of the island of Malta are the same, including the fossils.

The Dupal anomaly is no longer an anomaly. In totally different areas of the world rocks with the same composition have been found.

Were these created by a billion to one chance happening in two places or did the same creation force hit these areas?


« Last Edit: January 10, 2010, 03:49:33 by electrobleme »

electrobleme

  • Administrator
  • Plasma Star
  • *****
  • Posts: 1503
  • EUreka?: +1/-0
  • It's time to step out of the Gravity, Well?
    • Electric Universe theory blog
Dupal anomaly? in the Indan Ocean, Atlantic and Arctic Ocean (Gakkel Ridge)
« Reply #1 on: September 07, 2009, 01:53:51 »
Dupal anomaly? - Rocks Under the Northern Ocean are Found to Resemble Ones Far South


Quote
Scientists probing volcanic rocks from deep under the frozen surface of the Arctic Ocean have discovered a special geochemical signature until now found only in the southern hemisphere. The rocks were dredged from the remote Gakkel Ridge, which lies under 3,000 to 5,000 meters of water; it is Earth’s most northerly undersea spreading ridge. The study appears in the May 1 issue of the leading science journal Nature.

The Gakkel extends some 1,800 kilometers beneath the Arctic ice between Greenland and Siberia. Heavy ice cover prevented scientists from getting at it until the 2001 Arctic Mid-Ocean Ridge Expedition, in which U.S and German ice breakers cooperated. This produced data showing that the ridge is divided into robust eastern and western volcanic zones, separated by an anomalously deep segment. That abrupt boundary contains exposed unmelted rock from earth’s mantle, the layer that underlies the planet’s hardened outer shell, or lithosphere.

By studying chemical trace elements and isotope ratios of the elements lead, neodymium, and strontium, the paper’s authors showed that the eastern lavas, closer to Siberia, display a typical northern hemisphere makeup. However, the western lavas, closer to Greenland, show an isotopic signature called the Dupal anomaly. The Dupal anomaly, whose origin is intensely debated, is found in the southern Indian and Atlantic oceans, but until now was not known from spreading ridges of the northern hemisphere. Lead author Steven Goldstein, a geochemist at Columbia University’s Lamont-Doherty Earth Observatory (LDEO), said that this did not suggest the rocks came from the south. Rather, he said, they might have formed in similar ways. “It implies that the processes at work in the Indian Ocean might have an analog here,” said Goldstein. Possible origins debated in the south include upwelling of material from the deep earth near the core, or shallow contamination of southern hemispheric mantle with certain elements during subduction along the edges of the ancient supercontinent of Pangea.

Arctic Seafloor: The area of the Gakkel Ridge nearest
Greenland contains a chemical signature until
now found mainly in the Indian Ocean.
(Courtesy IBCAO)

At least in the Arctic, the scientists say they know what happened. Some 53 million years ago, what are now Eurasia and Greenland began separating, with the Gakkel as the spreading axis. Part of Eurasia’s “keel”—a relatively stable layer of mantle pasted under the rigid continent and enriched in certain elements that are also enriched in the continental crust—got peeled away. As the spreading continued, the keel material got mixed with “normal” mantle that was depleted in these same elements. This formed a mixture resembling the Dupal anomaly. The proof, said Goldstein, is that the chemistry of the western Gakkel lavas appear to be mixtures of “normal” mantle and lavas coming from volcanoes on the Norwegian/Russian island of Spitsbergen. Although Spitsbergen is an island, it is attached to the Eurasian continent, and its volcanoes are fueled by melted keel material.

“This is unlikely to put an end to the debate about the origin of the southern hemisphere Dupal signature, as there may be other viable explanations for it,” said Goldstein.  “On the other hand, this study nails it in the Arctic. Moreover, it delineates an important process within Earth’s system, where material associated with the continental lithospheric keel is transported to the deeper convectiing mantle.”

The other authors are based at LDEO; Harvard University; Oregon State University; and the University of Tulsa. The study was supported by the National Science Foundation. Copies of the study,  “Origin of a ‘Southern Hemisphere’ Geochemical Signature in the Arctic Upper Mantle,” may be obtained from Nature, Dr. Goldstein,  or the press office at Columbia University’s Earth Institute, of which LDEO is a member.

Rocks Under the Northern Ocean are Found to Resemble Ones Far South - earth columbia .edu


Gakkel Ridge Rocks or doesn't actually Rock properly

Quote

...These two-billion-year-old rocks that time forgot were found along the bottom of the Arctic Ocean floor, unearthed during research voyages in 2001 and 2004 to the Gakkel Ridge, an approximately 1,000-mile-long underwater mountain range between Greenland and Siberia. This massive underwater mountain range forms the border between the North American and Eurasian plates beneath the Arctic Ocean, where the two plates diverge.

These were the first major expeditions ever undertaken to the Gakkel Ridge, and these latest published findings are the fruit of several years of research and millions of dollars spent to retrieve and analyze these rocks.

..."I just about fell off my chair," Snow said. "We can't exaggerate how important these rocks are -- they're a window into that deep part of the Earth."

Venturing out aboard a 400-foot-long research icebreaker, Snow and his team sifted through thousands of pounds of rocks scooped up from the ocean floor by the ship's dredging device. The samples were labeled and cataloged and then cut into slices thinner than a human hair to be examined under a microscope. That is when Snow realized he found something that, for many geologists, is as rare and fascinating as moon rocks -- mantle rocks devoid of sea floor alteration.

...Since the mantle is slowly moving and churning within the Earth, geologists believe the mantle is a layer of well-mixed rock. Fresh mantle rock wells up at mid-ocean ridges to create new crust. As the tectonic plates move, this crust slowly makes its way to a subduction zone, a plate boundary where one plate slides underneath another and the crust is pushed back into the mantle from which it came.

Because this process takes about 200 million years, it was surprising to find rocks that had not been remixed inside the mantle for two billion years. The discovery of the rocks suggests the mantle is not as well-mixed or homogenous as geologists previously believed, revealing that the Earth's mantle preserves an older and more complex geologic history than previously thought. This opens the possibility of exploring early events on Earth through the study of ancient rocks preserved within the Earth's mantle.
Uncovering a rare, two-billion-year-old window into the Earth's mantle, a University of Houston professor and his team have found our planet's geological history is more complex than previously thought  - Science Daily .com


« Last Edit: December 07, 2009, 07:24:53 by electrobleme »